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ON THE MOTION OF CHAPLYGIN'S SPHERE ON A HORIZONTAL PLANE* 

N.K. MOSHCHUK 

The motion of a heavy sphere on a fixed horizontal plane is considered. 
It is assumed that the centre of mass of the sphere is at its geometric 
centre, while the principal central moments are different (Chaplygin's 
sphere). Using the method of averaging, the motion of the sphere is 
investigated under slip conditions when there is low viscous and also low 
dry friction. It is shown that when the sphere moves with viscous friction 
it tends, for the majority of initial data, to rotate about the longest 
of the axes of the principal central moments of inertia. The motion of 
the sphere centre tends to become uniform so that the slip velocity 
approaches zero exponentially. A system of averaged equations, which is 
fully integrable, is obtained in the case of almost equal moments of 
inertia, when the friction is dry. The solutions are analyzed. 

1. Suppose that, due to the action of an initial push, a heavy sphere moves on a stat- 
ionary horizontal plane, touching it at a single point of its surface. The geometric centre 
of the sphere coincides with the centre of mass , and the principal central moments of inertia 
are generally different (A > B> c) /l/. We select the stationary system of coordinates 

0,X1X& so that O&,X, is in the supporting plane on which the sphere moves, and the XI 

axis is directed vertically upward. 

Let rll rar sa be the coordinates of the centre of the sphere 0 in the stationary system 
of coordinates. Then xa E R, where R is the radius of the sphere, and zrand z, satisfy 
the differential equation 

Mz,” = F1, Mq” = F, (1.1) 

where M is the mass of the sphere, and Frand FI are the components of the force of friction 
along the X1 and X%axes. 

For the viscous friction we have 

F, - - fMV,, F, = - fMV, (1.2) 

where f is the coefficient of friction, and VI and V, are the projections on the X1 and XI 
axes of the absolute velocity V of the point of the sphere which touches the supporting plane. 

Let Gr, G,,G, be the projections on the Xr,X,,Xa axes , respectively, of the sphere 
angular momentum vector G relative to its centre. All forces applied to the sphere intersect 
the X3 axis, hence Gs = G,, = con&. 
the X1 and Xr axes are 

The equations of the angular momenta in projections on 

Gl’ = F,R, G,’ = - FIR (1.3) 

Taking into account (1.2) we can rewrite (1.1) and (1.3) as follows: 

Xl l * = -fV,, 4” - -fV,, G1’ = -fMRV,, G; = fMRV, (1.4) 

We will denote by or and or the projections ofthe sphere absolute angular velocityvector 
o on the X, and X,axes, respectively. Then 

v, = s; - o& v,- a+'+ oJ-2 (1.5) 

The expression for the derivative of kinetic energy T of the sphere motion relative to 
its centre of mass can be written in the form 

I" = fMR ((P,V, - olV,) (1.6) 

Equations (1.4) have two first integrals 

Gr - MRx,’ - K, = cons& Gg + MRx,’ = K, = const (1.7) 

which are corollaries of the conservation of angular momentum relative to the contact point. 

*Prikl.Matem.Mekhan.,47,6,916-921,1983 

733 



734 

Substituting the expressions for 5' 1 and 2%' from (1.7) into (1.61, 
tions of (1.4), we reduce (1.4) and (1.6) to the form 

and into the last two equa- 

GI' = - f ‘?A - Kt + OiMRz); i = 1, 2 (1.81 

x' = 2f {(Gl - KJ (xG, - 01) + (G, - K,) (KG, - 02) + 
MR’ [x (o,G, + wzG2) - 012 - o,zl)iG2, i: = 2T/Ga 

We denote by a, b, c quantities inverse to A, B,C (a< b< c). Obviously 
This inequality defines in the space of variables G1,Ga,x 

a<x<c. 
a region representing the space 

contained between the two planes which correspond to the sphere rotation about the axis of 
maximum (x = a) and minimum (x = c) moment of inertia. 

Let the friction be low, i.e. f is a small parameter. 
‘if= 0) 

Thenin the unperturbed problem 
the sphere centre moves rectilinearly and uniformly, 

vector G is constant, and 
the principal angular momentum 

x = const, and the sphere performs Euler-Poinsot motion about its 
centre. According to the Poinsot geometrical representation of the motion of a solid /2/ the 
quantity x is equal to the square of the distance from the sphere centre the plane tangent to 
the ellipsoid of inertia and normal to G. Rotations of the sphere about the major, minor, 
and mean axes of the ellipsoid of inertia correspond to x = C, x = a, x = b. 

He will investigate the pertuxbed motion using the method of averaging. Averaging the 
right-hand sides of (1.81 with respect to the unperturbed Euler-Poinsot motion, we obtain 
(retaining the previous notation for the slow variables) 

dGJ& = - (G, -Kt+(o~>MRz); i=l, 2 

i&d& - 2 ((G, - fl,l N& - <@I>) + (Gg - Iis) x 

(XG, - (@I + MR* ix K&G, + <toa> Gz) - <qa> -<co~:,)l}lG* 

where ~=ft and the angle brackets denote averaging over rapid variables, as functions of 
time and the slow variables G,, GB,x. 

The averaging procedure was described in detail in /3/, where averaging over the Euler- 
Poinsot motion in the non-resonant case was carried out for the first time. Calcul&.ions 
showed that 

<wJ = XC&, (03 x XG,, <or" + 01') = x1 (G2 - G30') - 

'ir (G4 + G,,‘) h (4 

h (x) i: (x - a) (x‘- c) - h [i - E (k)lK (k)]k-’ 
E-b r--a 

h= 
(b-c)(x-a), x<b; b--4=’ x<b 

(b-aa)(x-c), x> b; b--n c--x -- 
c-b x-izy x>b 

whereK(k)and E(k) are complete elliptic integrals of the first and second kind, respectively. 
We thus obtain the averaged system of equations 

dG,l& = - Gf (1 + n&fR’) + If,; i = I, 2 (1.9) 

Let us consider the last of Eqs.(1.9). The use of the modulus of the elliptic functions 
k as the slow variable when investigating the equations of the perturbed motion, averaged 
over the Euler-Poinsot motion, was proposed in /4, 5/. On the basis of an analysis of the 
averaged equation for kZ, conclusions were drawn on the evolution of the motion. 

In the present paper we use the variable x, which is related to kz by a simple formula. 
Although the equations for k* in /4, 5/ and in this paper (if we change from x to k2 ) are 
different, the method of analysis is the same. It is based on the use of the properties of 
complete elliptic integrals of the first and second kind. We shall briefLy enumerate the 
properties of the functions I(~)t are required for a qualitative investigation of (1.9). 
The function b(x) is defined in la,cl , if it is additionally defined at the points a, b, c 

with respect to continuity. Moreover h(w)<0 everywhere, except at the points a, b, c, where 
it vanishes. On the basis of asymptotic expansions of h(u) at the points a, b, c and its 
properties enumerated above (taking into account the fact that IS l+G.,,a!GJ< 2 1, it is 
possible to draw the following conclusions: if at the initial instant of time X*E [a.&). then 
in the course of time x decreases and approaches a: if, however, xDa (b, c)' then x will decrease 
and reach the value of b in a finite time. Thus, the solutions of the averaged system reach 
the separatrixand pass through it. However, near the separatrix the method of averaging can- 
not be used in its usual form. 

The problem of passing through the separatrix is dealt with in /6, 7,'. It is shown there 

that the motion of a dynamic system is defined by averaged equations until the separatrix is 
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reached. As regards the further behaviour we can speak with definite probability. The 
measure of the set of initial data, for which the motion after crossing the separatrix cannot 
be defined using the averaged system together with the perturbations, is small. 

The problem considered here of the evolution of the motion of the sphere is described 
for most of initial data with an accuracy of o (jllnfl) by the solutions of an averaged system 
"joined together" from solutions in different regions, i.e. from solutions in the regions 
a<xcb and b<x<C. All solutions of the averaged system obtained by joining approach 
equilibrium in the plane x=a as r-++oo , i.e. the limit motion of the sphere is rota- 
tion about the axis of the maximum of the principal central moments of inertia. 

Since x+a as r++oo, from the first two of equations of (1.9) it can be seen that 

Gi - Ktl h-+0, r+ fm, i = i, 2; A = 1+ MRVA (1.10) 

and it can be verified that the characteristic numbers of the functions 
equal to A. 

Gi (T) --Kilh are 

From (1.7) we find that as t-t+= 

x1=-+ K,RtAh, x2’ -t -KlRIAh (1.11) 

Since the final motion of the sphere is rotation about the axis of maximum moment of 
inertia A, we have UD+ G/A as t-+x, , i.e. 

0, + K,IAh; i = i, 2; 0.. + GJA (1.12) 

It follows from (l.lO)-(1.12) that the slip velocity approaches zero exponentially. 
Thus the final motion of the sphere for any initial data from region a<%< b and for 

the majority of.initial data from region b<x<c is such that its centre moves uniformly 
along a straight line, and the sphere itself rotates at constant angular velocity about the 
axis of maximum moment of inertia, while the slip velocity approaches zero exponentially. 

2. As before, let the sphere centre of mass be at its geometric centre, and let the 
motion occur with slip when there is low dry friction (i.e. the coefficient of friction f is 
a small quantity). The moments of inertia A, B, C are different but close to each other. 
As in Sect.1, we use the notation 0,X,X,X8 for the stationary system of coordinates; the 
axes of the attached system of coordinates 
axes of inertia; 

Oz,~~ are directed along the principal central 
21, so are the coordinates of the centre of the sphere in the stationary co- 

ordinate system;p, g, r are the projections of the sphere instantaneous angular velocity 0 
on the htZ3tZ3 axes; and ail (i, j = 1,2,3) are the direction cosines that determine the trans- 
ition from the attached to the fixed system of coordinates. 
0/I,, (A - CYI,, f are of the same order of smallness. 

The quantities (A -&/I,,, (B - 
Here I,= 2MRVi is the moment of 

inertia of the homogeneous sphere. The coordinates of the point of contact in the attached 
system are --Ra,,, --Ra,,, - Ra,,. 

The theorems on the variation of the momentum and the angular momentum, and the Poisson 
kinematic relations enable us to write the following system of equations in zl, x1, p,q,r,aij 

21’ = - fg co9 a, 5; = - fg sin a 

Ap' + (C 
(2.1) 

- B) qr = fMgR (- a,, sin a + apl cos a) 

Bq’ + (A - C) pr = fMgR (- alp sin a + a,, cos a) 

Cr’ + (B - A) pq = fMgR (- a,, sin a + as5 cos a) 

al; = af2r - ai3q, af2' = afg -a+lr, ai,’ = aig - ai,q 

(i = 1, 2, 3) 
where a is the angle between the vector v (see Sect.1) and the X,axis. 

We complement (2.1) by the following relations 

VI = II' - R @azl + gag, + r+,). V, = 20' + R (pa,, + qal, + rar,) (2.2) 

Equations (2.1) and (2.2) 
and V /0/ 

yield the first-approximation differential equations for a 

a’=@, cosa+@,sina)/V, V’=-ifg/:!+(O,sina-@,cosa) (2.3) 

a._ B-c C-A 
1 Aqrai~ + 7 pm + $$ pqai3; t=1,2 

As in /8, 9/ we introduce instead of afr, afPl ai3 
formulas 

the variables p;, &,yi using the 

ail = pi 
4’ 

VP-r 2 
slnyi + Pivm o e_r_,OS,i+t*+ 

42 = - Pi* sin Pi + pi Q -LoSyj+~+ 
V/p'+qz o 
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where the quantities &, &, & are the cosines of the angles between the vector o and the 
Xl, Xxr. XS axes, and the quantity lR5s 1 is the distance of the centre of the sphere from the 
plane perpendicular to o and passing through the point of contact. The trivial integrals of 
the Poisson kinematic equations in the new variables have the form 

In the unperturbed motion yt'= o , 
pi* + sp = 1. 

and the quantities 6r and pi are constant. We will make 
one more replacement of variables. Instead of h and &J we will introduce 0~~ and a, using the 
formulas 

a1 pe &GOB a + &+a, a0 = - &sin a + &, cos a 

The quantities a,and a, have the following geometric meaning: al is the cosine of the 
angle between the vectors o and V, and at is the cosine of the angle between o and the vector 
parpendicular to V lying in the horizontal plane , with the shortest notation from W to that 
vector being anticlockwise. 

Equations (2.1) and (2.3) in the new variables are not given here for brevity. Note that 
the variables sl',s~',p,q,l,aI,aI, c9,a, Pare slow and Pi are fast. 

Averaging the right-hand sides of the equations for the slow variables with respect to 
the fast variables yt , we obtain the following first-approximation system: 

=1 _ = - fg co8 a, s/ = - fg sin a (2.4) 

Ap' + (C - B) qr = fMgRa&o {ABC, pqr) (2.5) 

(2.6) 

(2.7) 

From (2.5) we obtain the following equation for o: 

(2.8) 

From (2.7) we obtain that the velocity of the point of contact to a first approximation, 
as in the case of a homogeneous sphere /2/, has a constant direction (a = censt) in the stat- 
ionary coordinate system, andits modulus decreases linearly and vanishes after a time 2VJ7fg. 
From that instant the sphere begins to roll, and hence it is necessary to solve the averaged 
system in that interval. In a time interval of the order of l/f the solutions of the averaged 
system approximate to the solution of the exact system with an error f. 

It follows from (2.4) that the centre of mass trajectory is, to a first approximation, 
a parabola. 

Equations (2.6)-(2.8) have the following first integrals: 

ala = cl, fl - UC 0 = $1 Srm = Cs 

and the general solution has the form 

where the constants cl,.. .,Cd are determined by the initial conditions. 
Formulas (2.9) show that in the course of time Ia,I+O,I aaI+1,lo I-cao, j~sI+O, i.e. 

the vectors o and V are so oriented, as to be orthogonal and lie in a horizontal plane. 
Note that the quantities plo,qfo and r/o can be calculated using the same formulas as 

for p, q, r in the Euler-Poinsot motion where the role of time is played by the quantity /0/ 

The author thanks A.P. Markeev under whose guidance this work was carried out. 
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BIFURCATION OF COMMON LEVELS OF FIRST INTEGRALS 
OF THE KOVALEVSKAYA PROBLEM* 

M.P. KHARLAMOV 

The structure of integral manifolds in the Kovalevskaya problem of a heavy 
solid about a fixed point is considered. An analytic definition of a 
bifurcation set is obtained, and bifurcation diagramsare constructed. The 
number of two-dimensional toruses that appear in the composition of the 
integral manifold is indicated for each connected component, additional 
to the bifurcation set in the space of first integral constants. 

The solution of the problem of the motion of a solid about a fixed point, as formulated 
by Kovalevskaya /l/, has been dealt with in many publications. We shall mention only a few 
of them. Appel'rot was the first to identify four classes of motion of the Kovalevskaya 
gyroscope /2/. A more detailed study of particular motions appeared in /3/, where a geometric 
treatment of Appel'rot classes is presented as corresponding to parts of the surface of multi- 
ple rootsof the Kovalevskaya polynomial in the space of first-integral constants. The hodo- 
graph was used in /4, 5/ for a complete study of the motion belonging to the first and second 
classes, and the so-called particularly unusual motion of the third class in which the moving 
hodograph of the angular velocity of the body is a closed curve. 

The set of zero measure corresponds to Appel'rot classes in the space of first integral 
constants. The remaining classes were not studied to any great extent, and it is only recently 
that their important qualitative properties were established /6/. It was assumed that the 
first Euler-Poisson equations areindependentof the motions considered. However, it is still 
not known exactly at what values of the constant integrals the latter are independent. It is 
proved below that the Appel'rot classes correspond to the cases of integral dependence. The 
study of this question enables us to indicate in all cases the number of connected compon- 
ents of the,integral manifold, each of which in the space of Euler-Poisson variables is a two- 
dimensional torus that carries conditionally periodic motions /7, 8/. The fact that integral 
manifolds, that do not degenerate when the Poincare parameter approaches zero, consist of 
two toruses is pointed out in /6/. 

The investigation of integral manifolds as part of the solution of the problem of the 
topological analysis of classical dynamic systems can be traced back to Poincare and Birkhoff. 
It was formulated in modern terms by Smail /9/. 

Pinally, we note /lo/, where, with some inaccuracies, eliminated in /ll/ when investigat- 
ing general cases, the particular problem of the bifurcation of the integrals of energy and 
areas is solved. The Kovalevskaya integral, and hence the complete integrability of the system, 
were ignored. 

1. Let p, q, I be the components of the angular velocity vector (u, and vr,v~, vI the 
components of the unit vector v of the vertical in the trihedron accompanying the solid. By 
a suitable selection of the moving axes and units of measurement, we reduce the Euler-Poisson 
equations in the Kovalevskaya problem to the form 
l Prikl.Matem.Mekhan.,47,6,922-930,1983 


